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Abstract
Introduced earthworms alter the trajectory and composition of plant communities, for example, through their feeding, bur-
rowing behaviour, and interactions with seeds. High densities of several earthworm species may decrease native biodivers-
ity and disrupt restoration efforts in tallgrass prairies. This affects efforts to conserve and restore such habitat, which is of 
high conservation and restoration priority in eastern North America and typically restored through seeding events. To date, 
Lumbricus terrestris (Lumbricidae) and other species have remained largely undocumented in tallgrass prairies. We surveyed 
22 tallgrass prairie sites in southern Ontario, Canada, to document earthworm density and species. Lumbricus terrestris was 
found at all sites. The average density was 66 ± 91 (SD) earthworms/m2 across our sampling plots, mostly juveniles (~94%). 
The number of all earthworms per plot significantly increased with the number of earthworm middens in each plot (χ2

1 = 4.50, 
P = 0.034). Prairies with a large number of middens had high earthworm density, but middens alone appear to explain little 
variation in our data (linear mixed-effects model, marginal R2 = 0.12) meaning there are other biologically important factors 
that affect their density. However, we found no effects of soil pH, organic matter content, or texture on the number earth-
worms per plot suggesting that earthworms can invade a range of tallgrass prairie soils with pH values between 5.27 and 7.67.
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Introduction
Agriculture, urban development, and woody 

encroachment have reduced the tallgrass prairie eco-
system in North America to less than 1% of its his-
torical area (Bakowsky and Riley 1994; Samson and 
Knopf 1994). In southern Ontario, Canada, tallgrass 
prairie likely once covered 800–2000 km2, but now 
typically exists as small, isolated parcels (Bakowsky 
and Riley 1994; Rodger 1998). These parcels are 
composed of plants that are unique to the tallgrass 
prairie ecosystem and provide rare habitat for native 
biodiversity (Morgan et al. 1995). Active restoration 
of tallgrass prairie is ongoing, often on former crop-
lands, with the aim of re-establishing native vegeta-
tion communities through seeding (Kindscher and 
Tieszen 1998). Restoration sites vary in size and 
connectivity, but most are <0.03 km2 and isolated 
(Bakowsky and Riley 1994). The success of tallgrass 
prairie restoration efforts has been mixed, as restor-
ing historical, highly diverse vegetation communities 

may take a long time (Kindscher and Tieszen 1998). 
The richness of native plant species in restored tall-
grass prairie is usually lower than in remnant parcels 
and often declines over time, whereas the richness of 
exotic plants is higher and increases with time (Leach 
and Givnish 1996; Sluis 2002; Camill et al. 2004; 
Martin et al. 2005; McLachlan and Knispel 2005).

Earthworms (Oligochaeta: Lumbricidae) are in-
fluential soil macro-organisms. As a result of their 
high consumption rates, burrowing activity, and large 
body sizes, they alter fundamental ecosystem pro-
cesses, such as nutrient cycling, water infiltration, 
rates of decomposition, and seedbank conditions; this 
affects the availability of resources for other soil biota  
and influences vegetative communities (Brown 1995; 
Edwards and Bohlen 1996; Forey et al. 2011). In 
the context of tallgrass prairie restoration, which is 
typically initiated by a single seeding event, the im-
pact of introduced earthworms on seed dispersal and 
consumption may be exacerbated. Earthworms are 
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increasingly recognized as important and under-stud-
ied seed predators (Eisenhauer et al. 2010; Forey et 
al. 2011; Drouin et al. 2014) that affect the dispersal, 
survival, and establishment of seeds through selec-
tion pressure (Forey et al. 2011; Clause et al. 2016). 
This pressure includes selective ingestion as well as 
digestion and egestion (Shumway and Koide 1994; 
Eisenhauer et al. 2009; Clause et al. 2016; McTavish 
and Murphy 2019), accelerated or inhibited germina-
tion (Decaëns et al. 2003; Clause et al. 2011), and 
transport of seeds (McRill and Sagar 1973; Thomp-
son et al. 1994). Thus, earthworms have direct effects 
on the composition and function of plant commu-
nities, but these vary by ecosystem, and species– 
specific interactions are common (Shumway and 
Koide 1994; Eisenhauer et al. 2009; Clause et al. 
2016; Craven et al. 2016). These effects compound 
other post-dispersal challenges to seed establishment, 
e.g., granivory by birds, rodents, and insects; com-
petition with ruderal weeds; and water availability 
(Moles and Westoby 2006; Eisenhauer and Scheu 
2008; Forey et al. 2011). Thus, it is critical to under-
stand the distribution and density of earthworms to 
effectively manage and restore invaded ecosystems.

Although earthworms did not survive the Wiscon-
sin glaciation that receded approximately 11 000 years 
ago in Canada and the northern United States (Gates 
1982; Reynolds 1994; Edwards and Bohlen 1996), 
21 species have been recorded in Ontario. Of these, 
19 are introductions from Europe and Asia, while the 
other two suspected native species, Bimastos parvus 
Eisen and Sparganophilus tamesis Benham, are pro-
vincially rare and known exclusively from arboreta 
and aquatic or semi-aquatic mud, respectively (Reyn-
olds 2014). Introduced earthworms can expand their 
range naturally by only 5–10 m/year (Marinissen 
and van den Bosch 1992); consistent with their ori-
gin, most introduced earthworms expand their range 
because humans move them (soil and bait movement; 
Callaham et al. 2006; Hale 2007). Despite human 
dispersal (Edwards and Bohlen 1996), the distribu-
tion of earthworms is limited by soil pH, texture, and 
moisture as well as food availability (i.e., leaf litter, 
vegetation, and consolidated organic matter) and tem-
perature (Guild 1952; Murchie 1958).

Previous work on Ontario earthworms has fo-
cussed on compiling individual observations to cre-
ate a province-wide map of distribution by species 
(Reynolds 1977, 2011a,b; Reynolds and Reynolds 
1992) and earthworm-driven changes in forest eco-
systems (Cassin and Kotanen 2016; Jennings and 
Watmough 2016; Choi et al. 2017). Although the neg-
ative effects of industrial tillage practices on earth-
worm populations in agricultural fields are well 
established (Clapperton et al. 1997; VandenBygaart et 

al. 1999; Simonsen et al. 2010; Briones and Schmidt 
2017), there is neither an estimate of the average bio-
mass of earthworms in Ontario soils nor a compre-
hensive survey of earthworm species, densities, and 
biomass. Such surveys can be difficult if earthworms 
in samples are mostly juveniles (e.g., as in surveys of 
deadwood in forests; Ashwood et al. 2019), which are 
difficult to identify to species.

Although the establishment and spread of non-
native earthworm species in North America has been 
occurring for centuries, we are only beginning to 
understand their current distribution (Phillips et al. 
2019). Lumbricus terrestris (Lumbricidae) appears 
to be widely distributed (Addison 2009), perhaps 
because it is commonly used as fishing bait (Keller 
et al. 2007). Research conducted in the midwestern 
United States (e.g., Callaham et al. 2001, 2003; Loss 
et al. 2017) can be relevant to Ontario because the 
two areas are part of the current northern range limit 
of tallgrass prairie. However, research is still needed 
in Ontario because Canada and the northern United 
States had few widespread native earthworm com-
munities following glaciation (Reynolds 2014), the 
northern tallgrass prairie plant community of Ontario 
forms a distinct subtype (Rodger 1998), and Ontario 
tallgrass prairie conservation remnants and restora-
tions occur on a small scale (e.g., <1 ha; Bakowsky 
and Riley 1994).

Introduced earthworms have severely impacted 
North American ecosystems and tallgrass prairies 
in southern Ontario may experience similar effects 
of earthworm invasion, specifically changes in plant 
composition and desired trajectory in restored sites. 
The objectives of this study were (1) to determine 
the densities of earthworms in tallgrass prairies of 
southern Ontario, (2) to document the species of 
earthworms found in tallgrass prairies, and (3) to 
summarize the relationship between earthworm 
numbers and soil properties to provide some direc-
tion on where and how to focus tallgrass prairie res-
toration efforts.

Methods
For sampling earthworm populations, we selected 

22 tallgrass prairie sites, including five remnant, two 
restored-remnant, and 15 restored sites in southern 
Ontario, Canada (Table 1, Figure 1). Restored-rem-
nant sites describe prairie that has re-established unex-
pectedly from the seedbank following accidental fire 
or large-scale brush cutting. To represent the diver-
sity of tallgrass prairie sampling sites across southern 
Ontario, we selected sites that varied in geographic 
range, management history, restoration age, adjacent 
land use, parcel size, and soil characteristics. Study 
site vegetation communities included ruderal weeds, 
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invasive plant species, and expected southern Ontario 
tallgrass prairie plants including grasses (Poaceae), 
such as Big Bluestem (Andropogon gerardi Vitman), 
Yellow Indiangrass (Sorghastrum nutans (L.) Nash), 
Switchgrass (Panicum virgatum L.), Little Bluestem 
(Schizachyrium scoparium (Michaux) Nash), and 
Canada Wildrye (Elymus canadensis L.) as well as 
forbs, such as Wild Bergamot (Monarda fistulosa L.; 
Lamiaceae), Virginia Mountain-mint (Pycnanthemum 
virginianum (L.) B.L. Robinson & Fernald; Lamiac-
eae), Black-eyed Susan (Rudbeckia hirta L; Astera-
ceae), Grey-headed Prairie Coneflower (Ratibida pin-
nata (Ventenat) Barnhart; Asteraceae), Asclepias spp. 
L. (Apocynaceae), Beardtongue (Penstemon spp. 
Schmidel; Plantaginaceae), Round-headed Bush-clo-
ver (Lespedeza capitata Michaux; Fabaceae), Dense 
Blazing-start (Liatris spicata (L.) Willdenow; Astera-
ceae), Symphyotrichum spp. Nees (Asteraceae), 

Solidago spp. L. (Asteraceae), and Desmodium spp. 
Desvaux (Fabaceae).

Fieldwork was conducted 10–25 October in 2015 
and 3–30 October in 2016. Five plots per site in 2015 
and ten plots per site in 2016 were pre-assigned using 
satellite imagery to distribute sampling plots evenly 
across the entire prairie area and not within 10 m of 
any edge. Because of a severe flooding event that led 
to standing water on the sampling area at six sites 
(three restored, three remnant) in 2016, the data pre-
sented for these sites are from 2015 only. Field sam-
pling was conducted during the day when soil tem-
peratures were above 10˚C and no rain had fallen in 
the previous 24 h.

At each site, earthworms were collected from 
one 20 × 20 cm plot using a mustard liquid extrac-
tion technique (Lawrence and Bowers 2002). Plot 
boundaries were marked with a plastic frame. At plots 

Table 1. Site characteristics and management history of restored and remnant tallgrass prairies sampled for earthworms in 
southern Ontario, Canada.

Site 
no. Location* Area, 

ha Status
Adjacent 

land  
use†

Year res-
toration 
started

Method  
of 

restoration

Most  
recent  
burn

Site management practice

Herbi- 
cide

Removal 
of woody 

plants
Grazed

1 Windsor 17.5 Remnant P, H — — 2010 — — —
2 Cambridge 1.2 Remnant P, H, A — — 2010 — Yes —
3 Windsor 1.3 Remnant I, P, H — — 2012 Yes Yes —
4 Windsor 1.9 Remnant I, P, H — — 2014 Yes Yes —
5 East Gwillimbury 3.5 Remnant P, H — — — — Yes —
6 Brantford 3.3 Restored-

remnant
P, H 2006 Seeded 2015 — Yes —

7 East Gwillimbury 0.6 Restored-
remnant

P, H 2015 — — Yes — —

8 Oakville 3.3 Restored P, A, H 2015 Seeded — Yes Yes —
9 Windsor 1.6 Restored I, H, A, E 2013 Seeded — — — —

10 Windsor 0.3 Restored I, H 2013 Planted — Yes — —

11 Windsor 2.1 Restored I, H 2013 Seeded + 
planted

— Yes — —

12 Cambridge 1.2 Restored P, E, H, A 2006 Seeded + 
planted

2010 Yes Yes —

13 Chatham-Kent 21.5 Restored A, I 2010 Seeded — Yes Yes —
14 Middlesex County 2.0 Restored A, P 2011 Seeded — Yes Yes Yes
15 Norfolk County 36.0 Restored P, A 2013 Seeded — Yes Yes —
16 Norfolk County 14.5 Restored P, A 2012 Seeded — Yes Yes —
17 Norfolk County 14.0 Restored P, A 2011 Seeded — Yes Yes —
18 Oakville 6.1 Restored P, I, H 2012 Seeded — Yes — —
19 Oakville 6.0 Restored P, I, H 2013 Seeded — Yes — —
20 Oakville 6.3 Restored P, I, H 2014 Seeded — Yes — —
21 Cambridge 16.0 Restored P, H 2010 Seeded 2015 — — —
22 North Dumfries 23.5 Restored P, A 2011 Seeded 2015 — Yes —

*Specific latitude and longitude of sample sites are not provided because of data sensitivity and research permit requirements.
†H = suburban housing, P = protected area, E = resource extraction, A = agriculture, I = major infrastructure.
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with litter cover, the surface litter was first removed 
and searched for earthworms. Then, 2 L of mustard 
solution (10 g of hot mustard powder [Weston Inc., 
Bulk Barn, Aurora, Ontario, Canada] per litre of dis-
tilled water) was applied to the plot over 10 min, and 
emerging earthworms were collected for the follow-
ing 15 min. As we were unable to reliably identify 
juveniles (i.e., sub-adult but ≥2 cm long) to species 
level based on physical traits alone, body length and 
counts were used to characterize the earthworm pop-
ulations. Each earthworm was allowed to become 
active in a collection container before its length was 
measured. We assumed that annelids <2 cm long and 
white were not earthworms but rather Enchytraeidae 
(i.e., microdriles, Oligochaeta: Annelida) and, thus, 
they were not counted.

Adult earthworms were identified by the presence 
of the clitellum. At each sampling site, a voucher 
specimen of any adult earthworm that could not be 
identified in the field was collected and immediately 
placed in a 75% isopropyl alcohol solution to obtain 
minimum species counts (i.e., the number of identifi-
able species) for each site. After being identified using 
physical attributes (Hale 2007), adult specimens were 

donated to The Barcode of Life project at the Uni-
versity of Guelph and are curated at that institution. 
The adult earthworms identified were used to create 
a minimum species list, which represents the lowest 
number of species that have been verified to occur at 
our sampling sites.

Lumbricus terrestris creates a permanent or semi-
permanent vertical burrow system that may extend 
several metres into the soil profile and is likely to be 
under-sampled using extraction methods appropriate 
for most other earthworm species (Hamilton and Sill-
man 1989; Edwards and Bohlen 1996). To achieve a 
representative sampling of this species, we counted 
the number of middens that were contained wholly or 
in part within each 20 × 20 cm sampling plot. Mid-
dens are unique to this species in southern Ontario 
and occur as distinctive piles of cast, organic, and 
inorganic materials that an individual L. terrestris cre-
ates around the opening to its vertical burrow (Butt 
and Grigoropoulou 2010; Stroud et al. 2016).

To quantify soil characteristics at each site, three 
soil samples were collected within 20 cm of each 
sampling plot using a 3-cm diameter soil corer to a 
depth of 20 cm after the application of 2 L of mustard 

Figure 1. Earthworm sampling locations in restored ( ), remnant ( ), and restored-remnant ( ) tallgrass prairies in south-
ern Ontario, Canada.
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solution. Soil samples were stored in a sample bag 
(Whirl-Pak, Madison, Wisconsin, USA) and fro-
zen until processing. Soil cores from each plot were 
homogenized and subsampled for analysis of pH, 
organic matter content, and texture following proto-
cols by McKeague (1978).

Data were analyzed using R version 4.0.3 (R Core 
Development Team 2020). We tested the effects of 
soil pH, soil texture, soil organic matter content, and 
midden area on the number of all earthworms per 
plot (i.e., density, including juveniles) using a lin-
ear mixed-effects model (LMM). In the LMM, soil 
pH, soil texture, soil organic matter content, and mid-
den area were fixed effects, and site was used as a 
random effect to account for the repeated measures 
within each tallgrass prairie site. Model fit was deter-
mined by assessing constancy of variance and nor-
mality of residuals using graphical methods. This 
model did not meet our assumptions of constancy of 
variance and normal residuals, so we log(x + 1) trans-
formed the number of all earthworms (including juve-
niles) per plot, which accounted for heteroscedastic 
and non-normal residuals. Marginal and conditional 
R2 values were calculated using the r.squaredGLMM 
function in the “MuMIn” package (Bartoń 2020). We 
used the ggpredict function in the “ggeffects” pack-
age (Lüdecke 2018) to compute marginal effects of 
the number of middens per plot on the number of 
all earthworms per plot. Data were then back-trans-
formed for graphical representation and graphed 
using the package “ggplot2” (Wickham 2016). All 
means are presented with ± 1 SD.

Results
Soil properties varied across the sampling plots: 

soil pH 5.27–7.67, mean 6.27 ± 0.68. Soil textures 
across our study sites ranged from sand to silty clay. 
Organic matter content was 1.7–4.3% and averaged 
3.0 ± 1.0% across our sampling plots. The percent-
age of sand, clay, or silt had no significant effect on 
the number of all earthworms (including juveniles) 
per plot in tallgrass prairie soils (sand: χ2

1 = 1.96, P = 
0.161; clay: χ2

1 = 1.95, P = 0.163; silt: χ2
1 = 1.96, P = 

0.161). There were also no significant effects of soil 
pH (χ2

1 = 0.12, P = 0.728) or soil organic matter con-
tent on the number of all earthworms per plot (χ2

1 = 
2.49, P = 0.115).

Earthworms were found at every tallgrass prai-
rie site in this study. Species included Allolobophora 
chlorotica (process ID: HCOEW026-17, sample 
ID: BIOUG32056-C02), Aporrectodea longa (pro-
cess ID: HCOEW012-17, sample ID: BIOUG32056-
A12), Aporrectodea rosea (process ID: HCOEW005-
17, sample ID: BIOUG32056-A05), Aporrectodea 
tuberculata (process ID: HCOEW009-17, sample ID: 

BIOUG32056-A09),  Dendrobaena octaedra (process 
ID: HCOEW015-17, sample ID: BIOUG32056-B03), 
Lumbricus rubellus (process ID: HCOEW001-17, 
sample ID: BIOUG32056-A01), L. terrestris (process 
ID: HCOEW029-17, sample ID: BIOUG32056-C05), 
Octolasion tyrtaeum (process ID: HCOEW003-
17, sample ID: BIOUG32056-A03), and the Apor-
rectodea caliginosa species complex (process ID: 
HCOEW019-17, sample ID: BIOUG32056-B07). 
DNA barcoding analysis could not distinguish 
between several species in the A. caliginosa species 
complex, so we list this species here. We consider A. 
longa and A. tuberculata, as well as Aporrectodea tur-
gida, to be part of the A. caliginosa species complex. 
Lumbricus terrestris was the only species observed at 
every site. We report the first record of D. octaedra 
in Waterloo Region, Ontario, Canada, and L. rubel-
lus in Halton Region, Ontario, Canada. Voucher spec-
imens were deposited at the Biodiversity Institute of 
Ontario, University of Guelph. No native earthworms 
were identified in this study. Earthworm species rich-
ness (based on adults) at each site varied between one 
and five species per site. On average, we found 3 ± 1 
earthworm species in each tallgrass prairie.

The total number of all earthworms per site 
(including juveniles) varied between five and 108 
(Table 2), with a mean count of 37 ± 29 earthworms 
across all sites. The earthworm density across our tall-
grass prairie sites was 8–346 earthworms/m2 (aver-
age 66 ± 91 earthworms/m2). Most of the earthworms 
found were juveniles (94.0 ± 6.5%). The highest per-
centage of adult earthworms (17%) was found in site 
11, a restored tallgrass prairie with clay loam soil 
adjacent to suburban housing and other major infra-
structure (Table 1). At eight sites, no adult earth-
worms were collected (Table 2).

The distribution of earthworm size classes varied 
considerably among sampling sites. Earthworms 5.0–
9.9 cm were the most abundant overall (39.3 ± 15.7%, 
absent from four sites), followed by 1.0–4.9 cm (32.5 
± 25.0%, absent from one site), 10.0–15.0 cm (23.4 
± 24.6%, absent from three sites), and >15 cm (4.9 ± 
6.3%, absent from 10 sites; Figure 2).

The number of middens per plot varied from zero 
to 10, with an average of 3 ± 2 middens per plot. The 
number of all earthworms per plot (including juve-
niles) significantly increased with the number of mid-
dens (χ2

1 = 4.50, P = 0.034; Figure 3). However, fixed 
effects in the LMM, such as the number of middens 
per plot, explained little variation in our data (mar-
ginal R2 = 0.12). Most of the variance was explained 
by the full model (i.e., both fixed and random effects; 
conditional R2 = 0.63).
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Discussion
Introduced earthworms were found in all the 

tallgrass prairie sites that we examined in southern 
Ontario, Canada. The earthworms we found likely 
underrepresent the number of endogeic and anecic 
species in particular because of the vertical stratifi-
cation of earthworm communities, their phenology, 
and our choice of sampling method (Edwards and 
Bohlen 1996). Because we found earthworms at all 
sites and in all plots at an average density of 66 ± 91 
earthworms/m2, we suspect that earthworms are now 
important macrofauna in southern Ontario tallgrass 

prairie soils compared to before their introduction 
(Forey et al. 2011).

Comparisons among studies of earthworm popula-
tions are complicated by variations in timing, method 
of collection, and their uneven distribution. Hand 
sorting is usually considered superior to other meth-
ods for quantifying earthworm populations; in com-
parison, the mustard extraction method will tend to 
underestimate numbers (Pelosi et al. 2009). The main 
argument against hand extraction is that it necessi-
tates digging up, breaking apart, and sieving an entire 
column of soil for each sampling plot (Nordström 
and Rundgren 1972). This has consequences for the 

Figure 3. Relationship between the number of all earthworms (including juveniles ≥2 cm long) per plot and number of mid-
dens per plot in tallgrass prairies in southern Ontario. The solid line shows the predicted values computed using the R func-
tion ggpredict.

Figure 2. Percentage of earthworms (EW) in each body size class in tallgrass prairies sampled across southern Ontario, Canada.
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sampling plot, including homogenization of the soil 
profile and disturbance of plant root networks, fun-
gal hyphae, and soil-dwelling organisms. In con-
trast, mustard extraction is a low-disturbance method 
particularly suitable for use in sensitive, conserva-
tion-focussed habitats. Although we anticipated low 
earthworm densities as a result of using the mustard 
solution extraction method, we found densities simi-
lar to those documented in other ecosystems (Shakir 
and Dindal 1997; Price and Gordon 1998; Bohlen et 
al. 2004).

It was not surprising to find that the number of 
middens was related to the number of all earthworms 
per plot (including juveniles). Although the number 
of earthworms was poorly correlated with the num-
ber of middens in our tallgrass prairie plots (i.e., lit-
tle variation in our data was explained), middens may 
be centres of activity for other earthworm species, 
meaning that the invasion of L. terrestris may facil-
itate introductions of other species (Butt and Lowe 
2007). Therefore, plots with more middens could be 
expected to contain higher numbers of earthworms, 
including species other than L. terrestris. Middens 
may provide some indication of earthworm density 
in tallgrass prairies as observed in forests ecosystems 
(Loss et al. 2013); thus, assessing midden prevalence 
may be a cost-effective and low-impact approach to 
determining whether an alternative planting method 
is needed for tallgrass prairie restoration (e.g., plug-
ging in addition to seeding).

If there was temporal bias from sampling only in 
October, we would have expected to see earthworms 
that were similar in size and of the same species. 
The high percentage of juvenile earthworms of vary-
ing size recorded in this study suggests that the pop-
ulations we sampled are persistent and successfully 
reproducing. Whereas some species can only breed 
sexually (e.g., earthworms in the genera Lumbricus), 
many others can reproduce parthenogenetically (e.g., 
Octolasion and Dendrobaena spp.; Edwards and 
Bohlen 1996). With this reproductive flexibility, we 
suspect that the earthworm populations we found are 
either resilient to stochastic disturbances, such as the 
prolonged flooding or fire events that have occurred in 
our tallgrass prairie sites (e.g., by escaping flooded or 
burned areas), and/or have recolonized from nearby 
areas post-disturbance. If this is the case, earthworms 
now represent a persistent and dominant soil fauna in 
tallgrass prairies in southern Ontario, which compli-
cates our capacity to manage and restore these eco-
systems, especially because of earthworms’ potential 
to damage seeds.

We found that L. terrestris density was similar 
across a range of tallgrass prairie sites. Although we 
specifically analyzed site history (i.e., remnant versus 

restored tallgrass prairie), that does not appear to influ-
ence susceptibility to invasion based on our data. As 
such, restoration efforts in all sites may require high-
density broadcasting of seeds to account for the rela-
tively high density of earthworms that will ingest and 
transport seeds. Because we did not observe effects 
of soil texture or soil pH on earthworm density, our 
work suggests that ecosystems previously consid-
ered resistant to earthworm invasion (e.g., sandy and 
acidic soils; Frelich et al. 2006) should be monitored 
for earthworm introductions, and proactive planning 
may be a necessary component of restoration efforts 
in ecosystem management plans.

New research using nested polymerase chain 
reaction to improve detection of earthworm DNA 
is promising for early detection and rapid response 
to introduced earthworms, but has yet to be widely 
implemented (Jackson et al. 2017). If viable, this 
approach would be effective in generating a compre-
hensive survey of earthworm distribution and antici-
pating future earthworm spread. This is particularly 
important in the context of tallgrass prairie restoration 
because plant community trajectory and composition 
are affected by earthworm species-specific interac-
tions with seeds, including ingestion and digestion, 
accelerated or inhibited germination, and seed trans-
port through the soil profile (McRill and Sagar 1973; 
Shumway and Koide 1994; Thompson et al. 1994; 
Decaëns et al. 2003; Eisenhauer et al. 2009; Clause 
et al. 2011, 2016).
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