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Abstract
Mercury (Hg) emissions have increased since 1950 and biomagnification in Arctic ecosystems can affect animals, particu-
larly at higher trophic levels. Exposure to Hg can negatively affect young developing animals, resulting in altered morphol-
ogy and ultimately, lower fitness. We examined the relationship of mandible fluctuating asymmetry (FA) with gastrointestinal 
helminth intensity and breast muscle Hg concentration in Common Eider (Somateria mollissima borealis). Procrustes analy-
sis of variance indicated significant FA but relatively high measurement error. Based on multiple linear regression model-
ling, there was no significant relationship between FA and Hg concentration or parasite burden. There may be a mismatch 
in trying to relate amount of Hg and parasite intensity in adults to FA that would have occurred early in life during skeletal 
development.
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Introduction
Mercury (Hg) emissions have increased since 

1950, primarily due to coal combustion (Streets et al. 
2011). In the atmosphere, emitted Hg may undergo 
reactions that result in the deposition of Hg onto the 
land and oceans (Krabbenhoft and Sunderland 2013). 
Deposited Hg is then methylated and converted into 
methylmercury (MeHg), which may accumulate 
across trophic levels, particularly in aquatic food 
webs (AMAP 2011; Krabbenhoft and Sunderland 
2013). Methylmercury is the most toxic form of mer-
cury to animals. In the Arctic, it is estimated that 
74.2–94.4% of Hg in animals originates from an an-
thropogenic source (Dietz et al. 2009).

Like other contaminants, Hg can affect biologi-
cal processes such as function of the central nervous 
system, hormonal regulation, and reproduction in ani-
mals. Mercury toxicity in birds often results in lower 
reproductive output, detrimental nesting behaviour, re-

duction in feeding rates, and thereby reduced juvenile 
survival (Scheuhammer et al. 2007). Compiled exper-
imental and correlational studies also reveal Hg’s ad-
verse impacts on avian reproduction, behaviour, endo-
crine system, and immunocompetence (Whitney and 
Cristol 2018).

In general, reduced immune function caused by 
contaminants may increase host susceptibility to par-
asites (Sures 2006) and several studies have linked in-
creased parasite load with higher Hg exposure. For 
instance, Glaucous Gulls (Larus hyperboreus) show 
higher acanthocephalan parasite intensities with 
higher Hg levels (Sagerup et al. 2009). Zebra Finches 
(Taeniopygia guttata) provided with MeHg in their diet 
showed greater coccidian parasite intensities instead of 
lower parasite intensities during the anticipated para-
site expulsion timeframe (Smith et al. 2018).

Fluctuating asymmetry (FA; Klingenberg 2015) is  
a biological assessment that has been used to de-
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termine contaminant and parasite impacts on ani-
mals (Møller 1992; Jenssen et al. 2010; Rodríguez-
González et al. 2020). FA refers to the structural 
discrepancies in left-right sides of a structure and its 
divergence from the expected ideal phenotype dur-
ing an organism’s development (Klingenberg 2003; 
Nijhout and Davidowitz 2003). FA studies focus on 
the idea that environmental stress lowers the indi-
vidual’s ability to mitigate the developmental varia-
tions on each side of the organism, resulting in higher 
asymmetry between the two sides of an organism’s 
structure (Klingenberg 2015). For instance, studies 
on small mammals reported higher levels of skull FA 
with increased exposure to environmental contam-
inants (Oleksyk et al. 2004; Sánchez-Chardi et al. 
2013; Yalkovskaya et al. 2016).

In this study, we evaluated the relationship between 
individual FA values, Hg content, and parasite inten-
sity in Common Eider (Somateria mollissima borea-
lis). Common Eiders are sea ducks found in coastal 
regions in the Arctic and subarctic zones (Goudie et 
al. 2000). Bivalves, gastropods, and crustaceans com-
prise the majority of prey items that eiders consume 
(Waltho and Coulson 2015). Common Eiders often 
become infected with endoparasitic helminths such  
as acanthocephalans and cestodes through their con-
sumption of intermediate crustacean hosts such as am-
phipods (Friend and Franson 1999; McLaughlin 2008; 
Nikolov et al. 2008). The endoparasites harboured 
by eiders include different species of digeneans, ces-
todes, acanthocephalans, and nematodes (Bishop and 
Threlfall 1971; Borgsteede et al. 2005). Wayland et al. 
(2001a) showed that in the Canadian Arctic, nematode 
numbers increase with higher Hg levels in Common 
Eiders. Parasite stress in Common Eider ducklings are 
also known to reduce nutrient availability and cause 
inflammation of the intestinal mucosa (Hollmén et al. 
1999). Parasites may impede the intake of necessary 
nutrients by inducing mucosa layer damage in the 
gastrointestinal tract (Hollmén et al. 1999).

Overall, the stresses induced by Hg contamina-
tion and the resulting parasite intensity during devel-
opment in young Common Eiders might reduce the 
ability of individuals to alleviate developmental var-
iations on the skull, leading to higher observable FA 
in adults. Therefore, we predicted greater FA in the 
skulls of adult Common Eiders with higher levels of 
Hg and greater gastrointestinal parasite intensity. In 
this study, we assumed that the Hg concentration and 
parasite intensity in adults reflects Hg exposure and 
parasites during development.

Methods
Eiders were collected in Cape Dorset, Nunavut in 

May 2011 as part of the annual Indigenous hunt. We 

used the skulls from 39 adult male Common Eiders, 
along with the corresponding wing chord (cm), total 
Hg (dry weight) in pectoral muscle tissue, and genus 
level helminth parasite intensity for each individual 
(see Provencher et al. [2016] for additional details of 
methods used to determine amount of mercury and 
parasite intensity; the parasite intensity parameter 
Provencher et al. [2016] used included non-infected 
birds that both Margolis et al. [1982] and Rózsa et 
al. [2000] consider to be parasite abundance, not in-
tensity). The skin was removed from the cranium and 
lower mandible of each specimen, which were then 
cleaned by Dermestid Beetles (Dermestes maculatus) 
and bleached with 3% hydrogen peroxide.

Landmarks (distinct locations for three dimen-
sional measurements) chosen for FA analysis for ver-
tebrate skulls often try to capture the whole shape of 
the skull (Oleksyk et al. 2004; Urošević et al. 2015; 
del Castillo et al. 2016). Mandibles were chosen for 
digitization rather than the whole skull because past 
FA studies show that the greatest potential effects of 
contaminants are on mandible FA (Sánchez-Chardi et 
al. 2013; Yalkovskaya et al. 2016). As mentioned in 
Klingenberg (2015), structures that have object sym-
metry, like skulls, should possess single landmarks on 
the midline of the structure and paired landmarks on 
the left and right side of the structure to ensure the re-
quired data are gathered for the analyses. Based on 
these criteria, we chose dorsal, lateral, and ventral 
landmarks that reflected the overall mandible shape. 
Measurement errors that can affect FA analysis are 
often associated with difficulty in finding and distin-
guishing the landmarks on the structure (Klingenberg 
2015). To reduce the likelihood of measurement er-
rors, the locations of the landmarks in this study were 
chosen because they were easily distinguished and 
past studies have found them to be repeatable.

In total, 20 landmarks were digitized on 39 man-
dibles (Figures 1 and 2; Table 1) using a MicroScribe 
3D Digitizer (Solution Technologies Inc., Oella, 
Maryland, USA). Ten mandibles (26%) were digi-
tized twice to calculate measurement error. Mandibles 
were secured in modelling clay on a raised wooden 
platform (11.0 cm tall × 4.5 cm wide × 9.7 cm long) 
clamped to a steady table. An elastic further secured 
the mandible by holding it between landmarks 5 and 
9, 15 and the platform. All landmark digitization oc-
curred from October 2017 to August 2018 and was 
performed by J.G.P.

Procrustes fit and Procrustes ANOVA (analy-
sis of variance) in program MorphoJ (Klingenberg 
2011) was used to acquire FA scores. The Procrustes 
fit removes configurational size, position and orien-
tation differences, and determines shape differences 
among individuals (Klingenberg 2015). A Procrustes 
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fit was selected with alignment with the principal 
axes. A Procrustes ANOVA was then used to acquire 
FA values for each individual, with the assumption 

that isotropic variation at all landmarks was identical. 
Procrustes ANOVA uses the total variation derived 
from the differences between each individual config-

Figure 1. Landmarks on the dorsal surface of a Common Eider (Somateria mollissima) mandible. Photo: C.A. Scobie.

Figure 2. Landmarks on the lateral surface of a Common Eider (Somateria mollissima) mandible. Landmarks with two num-
bers associated with it are replicated in the same area on the opposite lateral surface of the mandible. Photo: C.A. Scobie.

Table 1. Landmark definitions on the lateral and dorsal surfaces of the Common Eider (Somateria mollissima) mandible.

No. Definition
Dorsal
1 Tip of dentary (adjacent to the very anterior point where dentary splits into two)
2, 3 Supra-angular
3, 7 Very posterior tip of the protruding process towards the inside of the mandible in the angular/articular region
4, 6 Most anterior tip of the protruding process towards the inside of the mandible in the angular/articular region
5 Most posterior point where the dentary splits into two (adjacent with dentary tip)

Lateral
9, 15 Point where the dentary articulates with the other bones. Point directly adjacent to the vacuity, occurs at the 

bottom of the curved bone
10, 16 Uppermost point of the protruding process before the supra-angular
11, 17 Pointed edge in the articular/angular region the lies just before articular surface
12, 18 Uppermost pointed tip of the articular
13, 19 Most posterior point of the curve at the bottom of the articular
14, 20 Most posterior point in the articulation between dentary and the latter half of the mandible (or the vacuity)
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uration and the average configuration and allocates 
it into individual, reflection (comparison of sides of 
symmetrical object), and the interaction between in-
dividuals and reflection variation, as well as measure-
ment error (Klingenberg et al. 2002). MorphoJ pro-
vides individual FA values as Procrustes FA values 
or Mahalanobis distances (Klingenberg and Monteiro 
2005; Klingenberg 2011).

Total Hg was measured from muscle tissue from 
the left pectoral muscle of each eider. Most of the to-
tal Hg found in aquatic birds is comprised of the toxic 
form (MeHg; Houserova et al. 2007), so we used to-
tal Hg in our analyses with the assumption that most 
was likely MeHg. The intestines of each eider were 
examined thoroughly and all helminths found were 
identified to genus. Initial dataset exploration showed 
right-skewed counts for Lateriporus (cestode or tape 
worm), Microsomacanthus (cestode), and Profilicollis 
(acanthocephalan or spiny-headed worm) data. These 
data were log-transformed to remove non-normal-
ity. Program STATA 11 (StataCorp 2009) was used to 
perform a multiple linear regression analysis involv-
ing Hg concentration (Hg/g of dry weight) and para-
site intensity for log-Lateriporus, log-Microsomacan-
thus, and log-Profilicollis and categorical variables 
Fimbriarioides (a cestode), unidentified cestode, in re-
lation to Mahalanobis distances measuring FA, while 
controlling for wing length.

Results
The analysis indicated highly significant variation 

in symmetry among individuals (F1026,988 = 6.72, P < 
0.0001; Table 2). Similarly, directional asymmetry or 
the variation among reflections was significant (F26,988 

= 47.80, P < 0.0001; Table 2), which means there was 
variation among averages of the two sides of the left 
and right side of the mandibles. The analysis also 
showed significant FA or reflection variations among 
individuals (F988,477 = 2.43, P < 0.0001; Table 2), in-
dicating a difference between the average of all left 
sides and all right sides of the mandibles. The F-value 
for the interaction between individual and reflection 
(Table 2) indicates the magnitude of FA relative to the 
measurement error (Klingenberg 2015). Our F-ratio 
indicates that measurement error was relatively high, 
but twice as much variation was explained by FA than 
measurement error (Table 2).

Mercury was detected in the muscle tissue of all 
eiders and they had an average concentration of 0.7 
µg/g dry weight (Table 3). Parasite intensity and Hg 
concentration did not significantly predict variation 
in Mahalanobis distances (R2 = 0.17, F7,31 = 0.90, P = 
0.51; Table 3). An apparent positive relationship be-
tween mercury and FA (Figure 3; Table 3) was not 
significant (t38 = 1.81, P = 0.08).

Discussion
We did not find a significant relationship between 

Table 3. Results of multiple linear regression analysis looking at Mahalanobis fluctuating asymmetry values of 39 adult male 
Common Eider (Somateria mollissima) mandibles from Cape Dorset, Nunavut, Canada in relation to mercury content and 
parasite intensity. Descriptive statistics are also provided for variables included in the model: average (median for parasite 
intensity), range of variables, and prevalence of each type of parasite.

Variable β SE P Average (range) Prevalence (%)
Wing −0.14 0.10 0.18 29.5 cm (27.5–31.1) —
Mercury 0.67 0.37 0.08 0.7 µg/g (0.3–1.2) —
Lateriporus (cestode) −0.07 0.07 0.36 9 (0–191) 90
Profilicollis (acanthocephalan) 0.01 0.06 0.87 4.5 (0–144) 69
Fimbriarioides (cestode) −0.22 0.74 0.11 0 (0–1) 3
Unidentified cestode −0.10 0.54 0.85 0 (0–2) 5
Microsomocanthus (cestode) −0.02 0.05 0.75 100 (0–1000) 87
Intercept 7.07 3.02 0.03

Table 2. Procrustes ANOVA results for adult male Common Eider (Somateria mollissima) mandibles assuming identical iso-
tropic variation for all landmarks. Results include analyses of digitized left and right sides of 39 mandibles, each with nine 
paired landmarks and two median landmarks.

Variables SS MS df F P
Individual 0.140 0.00014 1026 6.72 <0.0001
Reflection 0.025 0.00097 26 47.80 <0.0001
Ind × Reflection 0.020 0.00002 988 2.43 <0.0001
Error 0.004 0.00001 477
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FA in Common Eider mandibles and Hg concentra-
tion or parasite intensity. Our results do not support 
our initial hypothesis of higher FA with increasing 
muscle tissue Hg levels and parasite burden.

Unfortunately, Hg concentration in adult eider tis-
sues does not necessarily reflect the amount of mer-
cury birds are exposed to during skeletal develop-
ment. Because birds have several ways of reducing 
their Hg load, we are unable to determine the amount 
of Hg to which eiders were exposed during develop-
ment using Hg levels in the tissues of adult eiders. For 
instance, adult Cory’s Shearwater (Calonectris bore-
alis) deposit dietary Hg into their feathers (Monteiro 
and Furness 2001). Reduced brain, muscle, and liver 
Hg levels were also found after molting and Hg excre-
tion in European Starling (Sturnus vulgaris; Whitney 
and Cristol 2017). The different Hg elimination pro-
cesses throughout the avian body could have de-
creased the Hg load in the eiders in our study, making 
adult Hg levels a poor reflection of Hg levels experi-
enced during development.

An antagonistic interaction between consumed 
Hg and Selenium (Se) during development may have 
also reduced any impact of Hg on mandible sym-
metry. Selenium is found in relatively high levels 
in Arctic waterfowl (Stout et al. 2002; Braune and 
Malone 2005), including Common Eiders (Wayland 
et al. 2001b). Methylmercury is converted to inor-
ganic Hg in animal tissues, where it may bind to 
Se and prevent further damage in the animal’s body 
(Eagles-Smith et al. 2009; Scheuhammer et al. 2015). 
In Japanese Quail (Coturnix japonica) chicks, con-
tinuous exposure to Hg and Se diets led to dramatic 

mortality declines while exposure to Hg-only diets 
led to high mortality (Stoewsand et al. 1974). Studies 
on Mallard (Anas platyrhynchos; Hoffman and Heinz 
1998) and Shaoxing Duck (Anas platyrhynchos do-
mesticus; Ji et al. 2006) also attributed Se exposure 
and diet to the increases in antioxidant enzymes such 
as glutathione peroxidase, glutathione, and superox-
ide dismutase which reduces tissue and neurological 
damage and promotes MeHg removal from the body. 
For our study, Hg and Se intake during development 
possibly reduced the negative impacts of MeHg in 
Common Eiders through increased protection from 
oxidative stress.

In comparison to other studies, Common Loon 
(Gavia immer) with higher Hg burdens (>40 µg/g) 
showed greater feather weight asymmetry compared 
to adults with smaller Hg loads (<10 µg/g; Evers et 
al. 2008). These Hg levels are much greater than the 
maximum found in our study (1.2 µg/g). Herring 
et al. (2017) found inconsistent relationships be-
tween overall FA and tissue Hg levels in various wa-
ter birds. They found no relationships between the 
overall FA and total blood and feather Hg levels for 
American Avocet (Recurvirostra americana), Black-
necked Stilt (Himantopus mexicanus), and Caspian 
Tern (Hydroprogne caspia), but overall FA increased 
with higher Hg levels in breast feathers and blood for 
Forster’s Tern (Sterna forsteri; Herring et al. 2017). 
Herring et al. (2017) concluded that different avian 
structures may exhibit different relationships with Hg 
levels in different tissues and that some species may 
not show relationships with FA and Hg. Further com-
prehensive studies should determine which species 
exhibit Hg-related FA by examining multiple struc-
tures at once and pinpointing the most affected struc-
ture due to contaminant exposure. Although prev-
alence was high, the amount of mercury found in 
Common Eiders in our study was quite low compared 
to other studies (0.83 µg/g blood Hg; Meattey et al. 
2014) that also did not find adverse effects related to 
mercury.

We also did not find any relationship between 
FA and any of the helminth intensities in our study. 
Camphuysen et al. (2002) compiled levels of infec-
tion with Profilicollis botulus in Common Eider and 
found prevalence ranged from 76.7 to 100% with 
mean abundance ranging from 30 to 271 worms with 
a maximum of 1270 parasites in a single bird. Kats 
et al. (2007) also found P. botulus infection levels in 
Common Eider (prevalence = 83.8%; mean number 
= 109, range = 1–2938) far above what we observed, 
but infection did not contribute significantly to nega-
tive effects on body condition, regardless of age. The 
natural infection rates found in healthy juvenile and 

Figure 3. Predicted Mahalanobis fluctuating asymmetry val-
ues of 39 adult male Common Eider (Somateria mollissima) 
mandibles from Cape Dorset, Nunavut, Canada in relation to 
mercury concentration. The predictive model used median 
values of Lateriporus, Profilicollis, and Microsomacanthus 
and reference categorical values for Fimbriarioides and 
unidentified cestodes. Open circles are the raw data used in 
the model. Dashed lines represent 95% confidence interval.
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adult eiders suggest that helminths may not severely 
impact juvenile growth and development.

The Procrustes ANOVA results indicate moder-
ate measurement error during mandible digitization, 
which could have contributed to our non-significant 
results. Van Dongen (2015) showed that high meas-
urement error in FA studies weakens the relationship 
between the true and estimated individual FA values 
and leads to biased FA estimates. It is possible that 
the measurement error in our study resulted in un-
derestimated or overestimated individual FA values, 
which possibly prevented us from finding significant 
relationships. Variation among individuals for some 
of the landmarks potentially led to inconsistencies 
in landmark digitization for the whole group of in-
dividuals, which resulted in higher measurement er-
ror. Future studies should focus on increasing sample 
size, choosing better and more pronounced land-
marks, and allocating time to practice digitization be-
fore each session to reduce measurement error. If fea-
sible, an alternate method could be used where the 
mandibles are scanned three-dimensionally and dig-
ital techniques used to measure symmetry. Checking 
all the samples with a pilot study may also be benefi-
cial for determining problematic or appropriate land-
marks to use and whether replicates are needed for the 
main study (Klingenberg 2015).
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