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Canadian data from the North American Breeding Bird Survey (BBS) provide information on the population status and trends
for over 300 species that regularly breed in Canada. Since the first assessments were made in the mid-1970s, both the dataset
and the suite of statistical tools and techniques available to researchers have grown. As a result, Canadian BBS trend esti-
mates have been derived from numerous statistical models. Because the BBS data are relatively complex, different statistical
models can generate different trend and status estimates from the same data. In 2013, Environment Canada’s Canadian
Wildlife Service began producing BBS status and trend estimates using a hierarchical Bayesian model. To give users of BBS
trends and annual indices of abundance a better understanding of these estimates, we demonstrate and explain some of the
similarities and differences between the new hierarchical Bayesian estimates and those from the previous model; discuss the
philosophical and inferential consequences of estimating trends with the new model; and describe how the hierarchical Bayesian
model differs from the model currently used in the United States. Overall, trends and annual indices from the new model are
generally similar to estimates from the previous model; however, they are more precise, less variable among years, better represent
the spatial variation across Canada in population status, and allow for more intuitive and useful assessments of uncertainty.
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Introduction

The North American Breeding Bird Survey (BBS)
provides information on the population status (trends
and annual indices of abundance) of almost 300 bird
species in Canada. Indeed, it is the primary source of
information for over 200 of those species. Due, in part,
to its long history and continental coverage, the BBS
is considered to be the backbone of land bird conser-
vation in North America (Rich ef al. 2004*). It is a vital
component of a wide variety of high-level conservation
documents for Canada, e.g., the State of Canada’s Birds
(North American Bird Conservation Initiative Canada
2012%*) and the Status of Birds in Canada website
(Environment Canada 2011%*). Data from the survey
have also been used in hundreds of scientific publica-
tions on topics ranging from assessing population
trends to modelling habitat associations or impacts of
climate change on range shifts (Pardieck et al. 2008).

The approaches used to analyze BBS data have
evolved over time as new statistical methods have be-
come available and as the dataset has grown to support
increasingly complex models. The first Canadian BBS
routes were conducted in 1966, and the first national
trend estimates included the data from the first 10 years
(Erskine 1978%*). Population trends in that report were
estimated using a chaining-style analysis of averaged
year-to-year changes in species counts on routes run in
successive years, with the chain of year-to-year changes

indexed to a value of 100 in a base year (1973). Sub-
sequently, both the Canadian Wildlife Service (CWS)
and the United States Geological Service (USGS) began
to analyze the BBS data annually, but using different
methods. Early analyses by the United States’ agencies
(at the time, the Fish and Wildlife Service) calculated
annual indices using weighted average counts across
years and trends using route-regression models (Rob-
bins et al. 1986). Through the 1980s and 1990s, various
route-regression models (Geissler and Noon 1981) were
used by both the CWS and USGS, although variation in
approaches to weighting routes led to different estimates
(Thomas and Martin 1996). The USGS analyses con-
tinued to use route-regression models through 2008,
while, from 2002 to 2009, Canadian BBS data were
analyzed using a maximum likelihood (ML) model,
which estimated an annual index. Starting with the 2011
BBS data, Canadian trends and annual indices have
been estimated using a hierarchical Bayesian (HB) mod-
el, which is very similar to the model adopted by the
USGS in 2009 and described in Link and Sauer (2002)
and Sauer and Link (2011).

HB methods suit the BBS data’s complex structure,
because the Bayesian framework provides a coherent
and flexible approach for modelling the effects of sam-
pling variation (e.g., not all routes are surveyed each
year; not all birds present on a route are detected on any
given survey; and detection probabilities vary among
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observers) separately from temporal and geographic
variation in the underlying populations (e.g., popula-
tion change due to changing weather, resource abun-
dance, and human activity). In addition, the hierar-
chical structure is particularly efficient and powerful
because the distributional assumptions of the random
effects greatly reduce the number of parameters that
need to be estimated to model observer effects and
other nuisance parameters (Clark 2005). Similarly, the
hierarchical structure of the model mirrors the hierar-
chical structure of the data and allows effects to be
modelled at the appropriate scale, e.g., nuisance par-
ameters, such as overdispersion and the effects of
changes in observers over time, can be efficiently mod-
elled across all counts, while trends and annual varia-
tion around the trend can be modelled across routes
within strata (Link and Sauer 2002).

Bayesian methods also provide intuitive and direct
estimates of the uncertainty around the population
parameters (i.e., population trends and indices of annu-
al abundance) that are of primary interest to most users.
Bayesian methods are based on the idea that our under-
standing of an imperfectly known parameter, such as a
population trend, has a probability distribution. That is,
the mean, median, or mode of the distribution is our
best estimate of the parameter, and the variance, stan-
dard error, or percentiles (i.e., the credible interval) of
the distribution represent the uncertainty around our
best estimate. Our initial understanding of that distri-
bution is termed the prior probability distribution. The
data are used to update the prior probability distribu-
tion, through Bayes’ rule, to produce the posterior prob-
ability distribution, which expresses our final under-
standing of the parameter (Link and Barker, 2009).
For example, with a Bayesian framework, it is relative-
ly simple to estimate the posterior distribution of the
total change in a population since 1970, and from that
distribution, make concise and direct statements about
the probability that a population has declined; where-
as with previous analyses, uncertainty estimates were
largely limited to probabilities of observing the data
(or more extreme data) if the true population had not
changed.

The differences between Bayesian and frequentist
(i.e., traditional) estimates of uncertainty are exempli-
fied in comparing Bayesian credible intervals with fre-
quentist confidence intervals. Credible intervals pro-
vide a probable range of values for a parameter (e.g.,
in the case of a 95% credible interval, the range of val-
ues that contains, with a 95% probability, the true val-
ue of a population trend). Many readers will be more
familiar with confidence intervals and likely with inter-
preting them in the same way. However, for confidence
intervals this interpretation is incorrect, and the con-
fusion largely stems from the unintuitive nature of the
true definition of confidence interval, which relates to
an infinite number of hypothetical realisations of the
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data (Clark 2005). In essence, credible intervals, and
Bayesian methods in general, provide intuitive and
useful measures of uncertainty. For example, the cur-
rent BBS results website maintained by Environment
Canada (www.ec.gc.ca/ron-bbs) provides, for every
trend estimate, associated estimates of the probabilities
of eight thresholds of population change (e.g., proba-
bility that the population has decreased, increased by
> 100%, etc.). Species-at-risk status assessments can
now easily consider an explicit measure of the proba-
bility that a population has reached one of the thresh-
olds used to categorize a species as threatened or
endangered (e.g., COSEWIC 2011%).

The application of HB methods to the BBS repre-
sents the most recent development in estimating the
status and trends of hundreds of bird species across
North America. Three closely related HB models are
described in the literature or are in use for analyzing
trend and annual indices from the BBS data. The first
model (HB,) was described by Link and Sauer (2002).
It was subsequently refined to account for the bias in
retransforming annual index estimates from the log-
scale to the scale of average counts (second equation
in Sauer and Link 2011). The second model (HB,) is
currently used in annual analyses by the USGS. The
third model (HB;) includes an additional refinement
that has the effect of scaling the annual indices more
closely to the average observed count on routes within
a stratum and improving estimates of trends for larger
regions. HB, is the model currently used in the CWS
annual analyses. The distinction between models HB,
and HB, is important because trend and annual index
estimates from the USGS include Canada and Canadi-
an provinces. Therefore, anyone interested in a species
trend for Canada must choose between the estimates
derived by the USGS (using model HB,) and those
derived by the CWS (using model HB,).

Because the BBS data and the statistical models
used to analyze them are complex, different analytical
approaches can result in different estimates of popu-
lation parameters, particularly if the underlying signals
in the data are relatively weak or variable or if the
sampling is imbalanced. The BBS sampling method is
a stratified random design that aims to generate a bal-
anced and approximately representative sample of bird
populations across North America (Erskine 1978%).
Of course, as with any field survey, practical constraints
introduce some variation and bias into the data: uneven
spatial distribution of active routes, changes in the num-
ber and spatial coverage of routes surveyed over time,
and variation among and changes over time in ob-
servers. The nested structure of the data (i.e., stops nest-
ed within routes, routes selected within degree-blocks
and aggregated into analytical strata) provides added
challenges. Analyses of BBS data have different ways
of accounting for all or some of these sources of vari-
ation and bias, and, as a result, different analyses can
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sometimes generate different estimates of population
trends and annual indices (e.g., Thomas 1996; Thomas
and Martin 1996; Sauer and Link 2011).

For many species and regions, the underlying sig-
nals in the data are clear and strong, the sample sizes
are large, or the BBS sampling is very well balanced in
space and time. In these cases, even very different mod-
els will generate similar estimates of population status
and trends. In addition, although point estimates of
trend for a given species and region may differ among
models, most conservation or management decisions
and actions are based on relatively broad overall pat-
terns in population status. For example, the Status of
Birds in Canada website classifies species based on six
categories of population status, such as large decrease,
moderate increase, little change, and data deficient
(Environment Canada 2011*). Each of these categories
encompasses a relatively wide range of trend values;
thus, even when point estimates of trend or trajectory
differ among models, the broad population inferences
may be similar, particularly for populations with rela-
tively extreme status (i.e., large decrease or large in-
crease), which are likely to be the primary focus of
management.

Our three goals in this paper are to describe in detail
the HB, model we are now using in Canada to estimate
population trends and how it differs from the HB, mod-
el used by the USGS; to demonstrate and explain some
of the similarities and differences in the estimates pro-
vided by the HB, model and the previous Canadian
model (the ML model); and to discuss the most impor-
tant philosophical and inferential consequences of esti-
mating trends and annual indices of abundance with
the HB, model.

Methods
Maximum likelihood model

The model used to generate Canadian BBS trends
between 2002 and 2009 is a weighted ML model (see
Appendix 1). It uses a series of equations to derive ML
estimates of stratum and year-specific annual indices
(/Ii,j):

Aij=expu+a;+ B +vjx)

The model assumes counts of birds on BBS routes
are Poisson distributed, and estimates terms to account
for the effects of each year (f3), variation among routes
(o), and variation among observers and observation
conditions in each year (ij »)- The means of the esti-
mated effects of year, route, and observer are fixed at
0, and p is not estimated, but held constant as the ob-
served average count of birds across all years and
routes. The analysis is conducted using the sampling
strata of the survey: degree blocks (regions defined
by one degree latitude and one degree longitude, Fig-
ure 1 inset). The ML estimation of annual indices is
weighted so that each degree block with data influ-
ences the estimate in proportion to its area, regardless
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of the number of routes with data. Weighting limits the
influence of degree blocks with more routes, which,
because the BBS is volunteer-based, tend to occur in
areas with larger human populations. The weight for
each route from degree block i used in the analysis is
n;' * 4i, where n is the number of routes in the degree
block and 4 is the degree block’s area. The model was
run through a custom C++ program.

The ML model estimates the annual indices direct-
ly, and trends are derived from log-linear regressions
of the annual indices of abundance. A small constant
(0.001) is added to the annual indices before the log-
linear regression, because in years when the species is
not observed the annual index is set to 0. The standard
errors of the abundance indices and trends are esti-
mated using a “jackknife” procedure, which discards
one route at a time. A full description of the model
has never been published; however further details are
provided in Appendix 1.

Hierarchical Bayesian model, HB,

The CWS is now generating Canadian BBS trends
using the HB; model. It assumes that observed counts
on a BBS route j in year ¢ and stratum i have a Pois-
son distribution with mean (J;;,). The strata used are
areas created by the intersection of provincial and ter-
ritorial boundaries with those of the North American
Bird Conservation Regions (BCRs; North American
Bird Conservation Initiative International 2013%;
Figure 1). On the log scale, the As are modelled by
fixed effects for first-year observer effects (1, where
the value of I(j,#) is 1 if a route—year combination
represents an observer’s first year on that route and 0
otherwise) and stratum-specific fixed effects for abun-
dance (S)), trend over time (f;), and variance of the
year effects within each stratum ((5%]_). The model also
has random effects for overdispersion (g;;,) of counts
and stratum-specific random terms for year effects (4;,)
and observer—route effects (o, ;).

log(Aije) = Si+ Bt +yie + wpy +0l(,0) + &
[equation 1]

All prior distributions are standard, diffuse (non-
informative) conjugate priors; that is, the priors are
chosen so that the estimates are not influenced by any
prior knowledge—non-informative—and the specific
distributions, such as the inverse gamma for variances,
ensure proper posterior distributions—conjugate pri-
ors. Specifically, all variances are assigned diffuse
inverse gamma prior distributions (scale and shape
parameters set to 0.001) and the parameters S, f, v,,
and 7 are given diffuse normal distributions (mean 0,
variance 109).

The annual indices of abundance for stratum i and
year t are exponentiated sums of the year, stratum,
and trend effects estimated in equation 1, scaled by
the proportion of routes in the stratum on which the
species was observed (z,).
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FIGURE 1. Geographic strata for analysis of Breeding Bird Survey (BBS) data using the Canadian hierarchical Bayesian
model. The strata are the areas created by the intersection of provincial and territorial boundaries with those of Bird
Conservation Regions (BCRs). Exceptions are the strata consisting of all of BCR 7, which crosses several provinces
and territories, and all of BCR 14, which includes Nova Scotia and Prince Edward Island. BCR borders are indicated
by heavy black lines: BCR 3, Arctic Plains and Mountains; BCR 4, Northwestern Interior Forest; BCR 5, Northern
Pacific Rainforest; BCR 6, Boreal Taiga Plains; BCR 7, Taiga Shield and Hudson Plains; BCR 8, Boreal Softwood
Shield; BCR 9, Great Basin; BCR 10, Northern Rockies; BCR 11, Prairie Potholes; BCR 12, Boreal Hardwood
Transition; BCR 13, Lower Great Lakes/St. Lawrence Plain; and BCR 14, Atlantic Northern Forest. Within provinces
and territories, strata are indicated by different shades of grey. Regions filled with diagonal lines have insufficient
BBS data to be included in any analyses. The inset shows the original sampling strata for the BBS, i.e., degree-blocks,
overlaid on the province of New Brunswick.
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Mg =2;* eSi+ﬁi*t+yi,f+0.5*a£,i+o.5*cr§

[equation 2]

The variance components (0.5 * 63, + 0.5 * ¢7) are
added to correct for retransformation bias: the expo-
nent of the average of a normal distribution — the
sum of S; + i * ¢ + ¥;, — underestimates the average
of the log-normal distribution (Newman 1993). The
variance components ensure that the indices are scaled
to an average number of birds per route. Annual indices
for larger regions, i.e., provinces, territories, BCRs, or
country, are area-weighted sums of the stratum-level
estimates:

N, = DA,
A

[equation 3]

Trends in the HB, model are estimated as geomet-
ric mean annual changes in population size over spe-
cific intervals, expressed as a percentage. That is, the
trend B from year t, to year ¢, for a given region is:

1
B =100+ (%)""t“ 1

ta

[equation 4]

The HB, model described here is very similar to
the HB, model used by the USGS (described in Sauer
and Link 2011) with one modification: the HB, mod-
el estimates a common observer—route variance across
all strata (o3 instead of 63,). In the HB, model, the
stratum-specific observer-route variances (c3) are
drawn from a hyperdistribution that allows the vari-
ance of observer—route effects to differ among strata
and yet be estimated relatively efficiently, even for
strata with relatively few observer—route combinations.
The hyperdistribution is defined such that the preci-
sion (the inverse of the variance) of stratum-specific
observer—route effects (1/62), is assumed to come
from a log-normal distribution with a common mean
and variance, i.e., log(1/63,) = N(u,),02). In compari-
son, the HB, model estimates a single observer-route
variance term (c2) across all observer-route combi-
nations, which is given a diffuse inverse gamma prior
distribution (scale = shape = 0.001). The WinBUGS
code for the HB; model is available in Appendix 2A.

Comparisons between models

We used the HB; and ML models to estimate trends
and annual indices for all species using a common
dataset. The dataset included all observations from
Canadian BBS routes, run from 1970 through 2011,
under acceptable observation conditions (i.e., coded as
RunType = 1; USGS 2012*). Although the original
datasets were identical, the models have slightly dif-
ferent inclusion criteria for a given route—year com-
bination. For example, the ML model estimates a route-

SMITH ET AL.: NEW BREEDING BIRD SURVEY TRENDS AND INDICES

123

specific trend parameter that requires a minimum of
2 years of observations on each route, whereas the HB,
model estimates a stratum-specific trend parameter
and, therefore, can include data from routes with only
1 year of data. These differences were relevant to very
few route—year combinations (< 1%), so they resulted
in only very small differences in the final estimates.
All species names (English, French, and scientific), as
well as all trend estimates for each species, region, and
trend period, are available in Appendix 3.

For most comparisons, we contrasted estimates from
the two models at three scales. First, the national scale
provides a comprehensive comparison that has rele-
vance to many conservation and management deci-
sions. Second, the BCR-scale comparisons highlight
some of the important spatial characteristics of each
model, e.g., differences in area weights, spatial scope
of inference, and minimum data criteria (Canada’s 11
BCRs are shown in Figure 1). Finally, a comparison for
one province (New Brunswick; Figure 1 inset), which
is an identical stratum in both analyses, provides the
most direct comparison. This last comparison highlights
differences between the overall frameworks of the ML
and HB, models, because the data, spatial extent, and
relative area weights are as similar as possible.

We made quantitative comparisons of five charac-
teristics of the two models: (1) the number of species
in each region with trend estimates, (2) the magnitude
of trends, both long term (> 40 years) and short term
(10 years), (3) the precision of trend estimates, (4) the
inter-annual variability of short-term trends, and (5) the
scale of the annual indices. We did not include a com-
parison of the number of statistically significant trends
in the two models (i.e., a trend estimate for which the
confidence or credible interval excludes zero). Statis-
tical significance is a synthetic metric that confounds
trend magnitude and precision; therefore, making such
a comparison would add nothing new to the compar-
isons made here.

Magnitude of trends: To compare the magnitude of
the long- and short-term trends, we used an HB mod-
el analogous to a weighted paired ¢-test that accounts
for the uncertainty of each individual trend estimate.
Extreme trend estimates (i.c., estimates that are larger
in absolute magnitude) are more likely to be imprecise
and would strongly influence a direct comparison of
trends if not weighted by precision. Our comparison
approach was derived from one originally described in
Sauer and Link (2002), which assumes that estimated
trends are part of a collection of trends that share a
common mean and variance. However, we did not
assume a common average trend for each model (as
suggested in Link and Barker 2009) and did not, there-
fore, shrink imprecise estimates toward a common
mean. The comparison model uses trend estimates
(3> trend estimates for species s from model m) as
data and accounts for uncertainty in the estimation of
those trends using estimates of the variance of each



124

trend (63,»«)» It makes pairwise, within-species compar-
isons between the posterior estimates of trend from

each model
(ﬁs,HB - 65,ML)

and compares the overall average species-specific
differences

(Zf ﬁs,m; "Bs,ML)

The comparison model estimates the average, species-
level difference (i.e., the result of subtracting one esti-
mate from another) in trends between the two models,
weighted by the relative precision of each estimate.
The average of the species-level differences is an esti-
mate of the relative bias in the two models: positive
differences indicate that the HB, trend estimates tend
to be more positive (less negative) than the ML trend
estimates for a given species. In addition to evaluating
bias, we also estimated the correlation coefficient of
species-level posterior trend estimates from this model,
as a measure of overall agreement between trends
estimated by the two models. The WinBUGS code for
the comparison model is provided in Appendix 2B.

To compare the tendency for each model to pro-
duce extreme trend estimates (i.e., larger in absolute
magnitude), we estimated the slope of a regression of
ML trends on HB trends, using major axis, model 11
regression methods (Legendre and Legendre 1998).
Slope values > 1 would indicate that, on average, trends
from the ML model are more extreme for a given
species. Values < 1 indicate that HB trends are more
extreme. We used an unweighted regression, because
precision-weighted comparisons would greatly reduce
the influence of the extreme trends, which are often
imprecisely estimated.

Precision of trends: To compare the precision of
trend estimates between the two models, we treated
credible intervals for the HB; model and confidence
intervals for the ML model as comparable estimates
of variance (Sauer and Link 2011). Despite their fun-
damental mathematical and philosophical differences,
95% credible intervals from simple Bayesian models
using diffuse priors are generally very similar to 95%
confidence intervals from comparable frequentist mod-
els and, in practice, they are used in similar ways to
assess uncertainty in model estimates (Clark 2005).
We used the model described for comparing the mag-
nitude of trends to simultaneously compare the preci-
sion of trend estimates

1

(=)

Os;m

This model accounts for both the imprecision of each
trend estimate (through the estimated variance of
trends) and the imprecision around the estimate of the
variance. Specifically, the model assumes that the esti-
mated variances (62 ,,) of each trend estimate are mutu-

THE CANADIAN FIELD-NATURALIST

Vol. 128

ally independent (both within species [s] and within
models [m]) and independent of their associated trend
estimates (Sauer and Link 2002). The true variance of
each trend (c2,) was estimated using a chi-squared
distribution with » degrees of freedom, such that
Tl*asz, m 2
Gsz,m X n ,
where 7 is the number of routes on which the species
was observed (i.e., the number of routes contributing
data to the trend analysis). We then estimated the
proportion of species for which the HB, trend was
more precise (i.e., 62,5< 62,,,) and the average pair-
wise differences in the standard errors of each species’
trend
Yiolup=cimL
=5
where S is the number of species.

Inter-annual variability in short-term trends: The
two models have very different definitions of trend
(Sauer and Link, 2011): the HB, model estimates trend
as an endpoint comparison of the annual indices in the
first and last years of a given period; the ML model
estimates a series of annual indices, then derives trend
as the slope of a log-linear regression of the indices
against time. Because the HB; model trend estimate
is an end-point comparison, which does not directly
include any of the indices in the intervening years,
trend estimates from the HB; model could be more
variable among consecutive years (i.e., greater inter-
annual variation). For example, consecutive 10-year
trends estimated using the HB, model (e.g., 2000-2010
and 2001-2011) are based on completely different pairs
of annual indices. Variability of this sort is particular-
ly important because these short-term, 10-year trends
are the basic estimates of population change used for
species assessments by COSEWIC. Undue inter-annual
variation in trends could introduce some uncertainty
and instability into important and potentially costly
conservation decisions.

To compare inter-annual variation in short-term
trends, we calculated all possible 10-year trends (Byear
x - year x+10) Using each model from the entire time-
series of BBS data, i.e., B1970*19805 B197171931, ceey
B2001-2011. We then calculated the absolute value of the
change in estimates between all 32 consecutive pairs
of trends, c.g., ABI = \1319704980 - B197I—1981|, ABz =
IBro71-1981-Bro72-1982], s A3z = [Baooo-2010-B2001-20111
We averaged these estimates of consecutive change
in trend across the full time series

) i=1...32A i
@ =22ty )

and compared the averages between the ML and HB,
models for each species at the national scale.

Scale of annual indices: The annual indices from
the BBS reflect the relative abundance of a species
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among regions and influence the relative weight of
each region’s population trend in composite trends for
larger regions. In addition, the indices are used in many
conservation documents as a scale of the relative abun-
dance among species. In regions that are identical in
the two analyses, the two models produce annual in-
dices of abundance on the same scale — the average
expected count on an average route, conducted by an
average observer. However, annual indices from the
two models are derived in fundamentally different
ways. The ML model estimates the annual indices
directly, and trends are derived from log-linear regres-
sions of the indices on year. The HB, model estimates
trends directly and annual indices are derived esti-
mates of departures from a long-term trend line. We
compared the scaling of annual indices from the two
models for a region that is identical in the two analyses
— New Brunswick. For each species, we calculated
the average of the annual indices from each model
for New Brunswick for 1985-1995, which roughly
represents the middle of the time series for the BBS
in Canada. We limited our quantitative comparison to
this one region and window of time because it provid-
ed the most direct comparison. It was largely unaffect-
ed by differences among strata in area weights, the
inclusion or exclusion of particular routes, or in the
indices at either end of the time series, which are more
likely to be influenced by the way in which the ML
model handles years with no observations or by strong
underlying trends estimated using the HB, model.

To quantify differences in the scale of annual in-
dices, we used a generalized linear mixed model with
a Gaussian error distribution, a log-link, a fixed effect
of model type (HB, vs. ML), and a random effect for
species. We used the log-link because the models that
produce the annual indices estimate the variances of
the indices on the log scale and so that we could pro-
vide each species with an approximately equal weight
in the analysis (i.e., comparing estimates on the linear
scale would give abundant species undue weight). We
report the retransformed parameter estimate and con-
fidence intervals for the fixed effect of model type as
the average difference in annual indices between the
two models.

The HB, model used here produces annual indices
on a slightly different scale than the HB, model, which
estimates a single observer—route variance term for
all strata (c2). Therefore, we also compared annual
indices from the HB, model with indices from the
ML model. Observer—route variance influences the
scaling of annual indices in both HB models in two
ways. First, the structure of the observer—route vari-
ance (o3 vs. 62)) affects the estimates of the average
stratum-level abundance (S;). Second, the estimates
of observer—route variance are used as a retransfor-
mation factor that scales the annual indices to an esti-
mate of average counts per route.
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If a common observer—route variance across all
strata is estimated, as in the HB, model, some of the
ecologically relevant variation in abundance among
strata is modelled as observer—route error and not in-
corporated into the estimates of S, which, as a result,
become more similar among strata, i.e., they approach
the survey-wide average abundance. The observer—
route variance estimate is composed of the variation
in abundance among individual BBS routes as well
as the variation among observers. Although the vari-
ance among observers is entirely a source of error, the
variance among routes represents, at least partly, eco-
logically-relevant spatial variation in abundance. This
spatial variation in abundance among routes is also
nested within the variation in abundance among strata
— routes are uniquely associated with a given strata.
As a result, when a common observer-route variance
is estimated (63 in the HB, model), some of the vari-
ation in abundance among routes is modelled as error.
By contrast, the stratum-specific estimates of observer—
route variance (63,in the HB; model) allocate more of
the variation in abundance among strata to the esti-
mates of S..

The stratum-specific variance estimates in the HB,
model also retain greater variation in abundance among
strata, because they provide stratum-specific retrans-
formation factors to rescale the annual indices. The
observer—route variance is one of two variance com-
ponents (0.5 * 62, in equation 2) that are added to the
parameter estimates on the log-scale to adjust for the
bias in transforming from the log scale to the linear
scale (i.e., count of birds). Annual indices in the HB,
model are scaled by a multiplicative function of e%5*c3,,
which varies among strata; the analogous function
(e%3*c2) is the same for all strata in the HB, model.

All figures that include comparisons of the ML
and HB; models at the BCR scale have been arranged
so that the BCRs are sorted in descending order of an
approximate estimate of data quality, i.e., BCRs are
sorted in descending order of

ymp
Ap
for each BCR, b, where n, is the number of routes and

4, is the area of the BCR. Some additional compar-
isons are included in Appendix 4.

Results
Magnitude of trends

Overall, trends estimated from the ML and HB,
models were generally similar. Estimates from the two
models were correlated for all regions and time periods
(Figure 2), with higher correlations at the level of indi-
vidual strata and BCRs than at the national level (com-
pare plots for Canada and New Brunswick in Figure 2
and Figure 3A). Long-term trends were generally more
correlated than short-term trends (Figure 3A). Trends
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Canada

ML long-term trend estimate (%/year)

HB ; long-term trend estimate (%/year)
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New Brunswick

ML long-term trend estimate (%/year)

HB ; long-term trend estimate (%/year)

FIGURE 2. Point estimates (circles) and associated uncertainty (semi-transparent ellipses) of long-term Breeding Bird Survey

trends for Canada and New Brunswick calculated from the previously used maximum likelihood (ML) model and
the new hierarchical Bayesian (HB,) model. The diameters of the ellipses represent the central 67th percentile of the
posterior distribution of trend estimates from the Bayesian trend comparison model (vertical diameter = ML trend
estimates and horizontal diameter = HB, trend estimates). The diagonal line indicates a 1:1 relationship. The dotted
black lines divide the plot into quadrants representing combinations of trend—signs from the two models (e.g., points
and posterior mass plotted in the upper right quadrant represent species with positive trend estimates from both
models). Differences in trends for Canada incorporate differences between the two models in terms of model struc-
ture and assumptions, as well as differences in area weights, routes, and regions of the country included in the esti-
mates. Differences in trend estimates for New Brunswick are almost entirely due to differences in model structure
and assumptions. One species was omitted from both graphs because its trend estimates were extreme (> 25%/year)
and including it changed the scale such that it became difficult to discern relations among the remaining species.

from the two models also tended to be more correlat-
ed in regions with more data (i.e., BCRs closer to the
left side of Figure 3A, which have more routes in rela-
tion to their area).

At the national level, 54% of species had HB, trends
that were more negative than their ML trends, and
HB, trends were on average slightly more negative:
the average species-level difference in long-term trends
was —0.26%/year, although the 95% credible inter-
val—the interval between the 2.5 and 97.5 percentiles
of the posterior distribution—included zero (—0.68 to
0.16; Figure 3B). In contrast, national short-term trends
from the HB; model were on average more positive:
64% of species had HB, trends that were more posi-
tive, and the average difference was 1.1%/year, (95%
credible interval —0.41 to 1.7; Figure 3B). For most
BCRs, the average differences between trend estimates
from the two models followed the same pattern ob-
served in the national estimates, i.e., the differences in
long-term trends were more often negative and differ-
ences in short-term trends were more often positive
(open circles below the dotted line and closed circles
above in Figure 3B).

All trends from the HB, model tended to be less
extreme (i.e., less in absolute magnitude, points above

the dotted line in Figure 4), except for the national
long-term trends, where the opposite was true.

Precision of trends

Trend estimates from the HB, model, both long- and
short-term, were more precise than estimates from the
ML model in all regions. For national trends, 63% of
species had more precise trends with the HB; model,
and the standard errors of HB, trends averaged approx-
imately 0.5%/year smaller than the standard errors of
the ML trends (Figure 5). Within the BCRs, HB; trends
were more precise for almost all species (73-98%)
and their standard errors averaged approximately 2%/
year smaller (Figure 5).

Inter-annual variability of short-term trends
Ten-year trend estimates from the HB; model were
generally less variable among years than those from
the ML model (Figure 6). Across species, the mean
absolute year-to-year change in 10-year trend estimates
was 1.12%/year smaller using the HB, model than the
ML model for a given species. The average species-
level difference (HB, _ ML) in the mean absolute year-
to-year change in national 10-year BBS trends was
—1.12 (SE 0.17); in Figure 6A, most points are to the
right of the 1:1 diagonal line. In general, 10-year trends
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FIGURE 3. Correlation and comparison of the magnitude of long- and short-term Canadian Breeding Bird Survey trends esti-
mated using the earlier maximum likelihood (ML) model and the new hierarchical Bayesian (HB;) model. Bird
Conservation Regions (BCRs) are arranged in descending order of the ratio of the square root of sample size to area.
The correlations plotted in the upper graph show the overall similarity of trends estimated using the two models. The
differences plotted in the lower graph show the relative bias in the two models: negative values indicate that the HB,
trend estimates were smaller than the ML estimates (i.e., the population change was more negative and/or less posi-
tive); positive values indicate the opposite. All comparisons were made on the posterior estimates of trends, output
from a model that accounts for the relative precision of the original estimates. The circles represent the means of the
posterior distribution, with error bars indicating 95% credible intervals. See Figure 1 for BCR definitions.
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FIGURE 4. Slopes of major axis, model II regressions of Breeding Bird Survey trend estimates from the previously used
maximum likelihood (ML) model regressed on estimates from the new hierarchical Bayesian (HB,) model. Bird
Conservation Regions (BCRs) are arranged in descending order of the ratio of the square root of sample size to area.
These comparisons do not consider the precision of the estimated trends, for reasons explained in Methods. Values > 1.0
indicate that the absolute values of the ML trends are, on average, more extreme than the HB, trends for each species
(i.e., the ML trends are larger in absolute magnitude) and values < 1.0 indicate that the HB, trends are more extreme.
Error bars indicate 95% confidence intervals for the slope estimates. Slope values are plotted on a logarithmic scale
so that equal deviations from the 1:1 expectation appear equal above and below the dotted line (e.g., a slope of 2.0
represents the same magnitude of deviation from the expectation as a slope 0.5). See Figure 1 for BCR definitions.
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FIGURE 5. Comparisons of precision of Breeding Bird Survey trend estimates between the previously used maximum likeli-
hood (ML) model and the new hierarchical Bayesian model (HB,) in various regions of Canada. Bird Conservation
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negative values indicate the HB; estimates were more precise, i.e., have smaller SEs. Circles and associated error
bars represent the means and 95% credible intervals of the posterior distribution of estimates from a trend compari-
son analysis that accounts for the uncertainty in both the estimates of trend and the estimates of the variance of the
trends. See Figure 1 for BCR definitions.

from the ML model were much more variable for
species with relatively imprecise annual index estimates
(Figure 6B, lower row). For some species, 10-year Pine Siskin o A
trends from the HB, model were more variable than h
those from the ML model (points to the left of the diag-
onal line in Figure 6A); these are species with relative-
ly precise estimates of highly variable annual indices
(Figure 6B, upper row).
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On average, annual indices from the HB; model
were somewhat larger than those from the ML model
(mean difference = 1.29, 95% credible interval 1.23—
1.36), however the log—log relationship closely follows
the 1:1 line (Figure 7). Mean estimates from the HB,
model were more similar to the annual indices from
the ML model than those generated by the HB, model
with a common observer—route effect (mean difference o - . . ‘
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States Geological Survey
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log—log relationship diverged from the 1:1 line (Fig-
ure 7).

Discussion

Canadian BBS trends estimated using the HB; model
are generally similar in magnitude to those estimated
from the ML model that was in use between 2002 and
2009. This suggests that for most species, our under-
standing of population status has not been drastically
changed by the adoption of the HB, model.

Overall, the trends from the new HB; model are
more precise, less likely to have extreme values, and
less variable among years than those from the previ-
ous ML model. A similar hierarchical model (HB,)
showed similar improvements compared with the route-
regression model previously used to estimate BBS
trends in the United States (Sauer and Link 2011).
Although no single model is ideal for all species in
all situations, the differences demonstrated here sug-
gest that the HB; model provides better information
on the population status of approximately 300 bird
species breeding in Canada. The broad similarities in
trend estimates from the two models are not surpris-
ing; the BBS represents a large dataset, and many
temporal trends are clear and strong regardless of the
analytical models used to estimate them (as noted in
similar cross-model comparisons in Thomas and Mar-
tin 1996 and Sauer and Link 2011). For some species,
the two models generate strikingly different trend esti-
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mates, but, in most cases, the estimates are extremely
imprecise for both models. For example, in Figure 2,
the points that fall far from the 1:1 line are generally
very imprecise (i.e., have large credibility ellipses),
and the credibility ellipses overlap the 1:1 line in at
least one dimension for most of these species.

Magnitude

In some BCRs, long-term trends derived from the
HB, model are generally more negative/less positive
than those from the ML model. This difference is par-
tially the result of a statistical artefact in the ML mod-
el; thus, the HB, trend estimates are less biased. In the
ML model, for years in which a species was not ob-
served in a particular region, the annual index is set to
a small arbitrary value. That is, the annual index itself
is estimated at zero, but when the trend is calculated, a
small constant is added (0.001) so that the log-linear
regression can be calculated. For species and regions
with these zero counts near either end of a time series,
any estimated long-term trend will be strongly influ-
enced by this arbitrary value (O’Hara and Kotze 2010).
Because of the smaller number of BBS routes in ear-
lier years, species are more likely to have annual index
estimates of zero for those years, and, therefore, their
abundance is more likely to be represented by the arbi-
trary value leading to positive bias in the ML model
(Figure 8). In contrast, in the HB, model, the annual
index for those years is estimated to be a non-zero val-
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ue that reflects the best estimate of the abundance in
that year, given the number of routes with zero counts
in that year, and the estimates of all other parameters
in the model.

Precision

Canadian BBS trends estimated using the HB, mod-
el were more precise than those from the ML model,
and this difference was more pronounced for smaller
regions (i.e., New Brunswick and the BCRs). At the
national level, the HB, model’s hierarchical structure
makes efficient use of the data and gives moderately
more precise estimates than the ML model. For smaller
regions, the hierarchical structure of the model results
in additional efficiencies. Because the stratum-level
parameters are estimated within a single national mod-
el, estimates for the error, over-dispersion, first-year
observer effects, and the observer—route variance (i.e.,
the nuisance parameters) share information among
strata. This sharing of information makes for more pre-
cise stratum-level estimates of the nuisance parameters
than would be possible if they were estimated solely
from the much smaller set of routes within each stra-
tum. In contrast, the ML model accounts for the observ-
er and route-level nuisance parameters separately with-
in each region.

The HB, model’s increased precision has important
benefits for conservation in that it decreases uncer-
tainty around the assessment of species’ status. Steep
rates of change or abrupt changes in populations (e.g.,
30% decreases in populations that may warrant species
at risk status; COSEWIC 2011%*) can be identified with
greater certainty and over shorter periods of time. Sim-
ilarly, species can be more confidently classified into
status categories, such as those used in Environment
Canada’s Status of Birds in Canada website (www.ec
.ge.ca/soc-sbce).

Variability among years

For most species, the HB, short-term trend estimates
are less variable among years than the ML short-term
trend estimates, because the hierarchical structure of
the year-effect parameters makes annual fluctuations
much less sensitive to sampling error and annual route
coverage. For a few species, short-term HB, trend esti-
mates are more variable among years than ML trends,
but only when there is relatively strong evidence sup-
porting large annual fluctuations in the population’s
status. In essence, although short-term HB, trend esti-
mates will fluctuate more for populations whose status
is well estimated, those fluctuations are likely appropri-
ate because they are more likely to reflect real changes
in the populations and not sampling error. In these cas-
es, management decisions that rely on short-term trend
estimates, such as COSEWIC status assessments,
should also examine the population’s recent trajectory
to give some context to the trend estimate in any given
year. For data-poor populations, the HB; model’s short-
term trends will be more stable across years, so man-
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agement decisions can be made with some confidence
that a species’ status assessment will not strongly
depend on the year in which it was assessed.

Annual indices

At the stratum level, annual indices from the HB,
model are very similar to those from the ML model.
They are directly interpretable as the expected count
by an average observer on an average route in the stra-
tum. They are also more similar in scale to the indices
from the ML model than annual indices from the HB,
model. Estimating observer—route variance at the stra-
tum level in the HB, model brings the scaling of the
annual indices closer to a scale familiar to users of the
ML model results, which is approximately equal to the
observed average count across the routes run in any
given year.

The improvement in scaling of the annual indices in
the HB, model over the HB, model also has an influ-
ence on regional trends, because it better reflects the
variation in abundance among strata. Because region-
al annual indices are sums of the stratum-level indices,
the relative contribution of each stratum’s trend to a
regional trend is partly mediated by the relative abun-
dance of birds in each stratum. In relatively rare but
potentially important cases, regional trends from the
HB, and HB, models can be strikingly different: where
the average abundance, trend, and observer—route vari-
ance are highly variable among strata. For example,
the HB, model applied to Canadian data for Wood
Thrush (Hylocichla mustelina) estimates the national
trend at —1.8 (95% credible interval —2.6 to —0.9),
while the HB; model estimates the national trend at
—4.4 (95% credible interval —5.3 to —3.6). This large
difference — the credible intervals do not overlap —
is due to the relative weight in the two analyses of the
largely stable Wood Thrush population in southern On-
tario (Ontario BCR 13). In this region, the observer—
route variance is much lower than in any other stratum
in the analysis. As a result, the observer—route variance
retransformation factors are very different in the two
models (62 >> 62,.,,;,)- The larger retransformation
factor in the HB, model creates annual indices that
overestimate the observed abundance of Wood Thrush
in southern Ontario by a factor of 3 and, similarly,
overestimate the proportion of the national population
that occurs in the region and, therefore, its influence
on the national trend.

Users of published BBS estimates should be aware
that the scale of annual indices from the HB, model
and the ML model may differ because the models ac-
count differently for routes in regions not included in
each species analysis. The HB; model estimates an
annual index scaled to the expected count averaged
across routes within the strata included in the analysis,
i.e., it excludes routes where the species data are too
sparse or that are outside the species’ breeding range.
The ML model’s annual indices are scaled to the ex-
pected count averaged across all routes within the re-



132

gion being analyzed, e.g., for national trends, all routes
run in the country are included, regardless of whether
they fall within the species’ breeding range. For broad-
ly distributed and common species, for which all strata
and all routes are included in the HB, analysis, the
scales of the national estimates from each model will
be equal. For more locally distributed species, for which
the HB; analysis only includes a subset of the strata
(e.g., any species that breeds exclusively west of the
Rockies), the HB, annual indices will be scaled to a
much higher abundance because they ignore all of the
routes and strata outside of the species’ breeding range,
where the average counts are zero. It is important to
note that this difference does not affect our quantita-
tive comparisons of annual indices among the HB,,
ML, and HB, models (i.e., Figure 7), because we com-
pared them within a single stratum, nor does it affect
trend estimates in the two models; it only affects the
scale of the annual indices.

Improved population inference from BBS

Beyond the quantitative comparisons, some philo-
sophical arguments suggest that the HB, model rep-
resents an improvement over the ML model. First, the
Bayesian framework provides much more intuitive
and flexible inference than the frequentist framework
of the ML model. The correct inferential interpretation
of Bayesian credible intervals is almost certainly a more
natural expression of the type of inference that users
of BBS trends desire, i.e., there is a 95% probability
that the trend is greater than the lower bound and less
than the upper bound. In contrast, the correct interpre-
tation from frequentist analyses (usually confined to
tests of significance) do not relate to the estimates of
population change, but to the data that were sampled,
e.g., if the true rate of population change is zero, there
is less than a 5% chance of observing the data that
were collected. In addition, the ability to estimate the
full posterior distribution of a broad suite of derived
parameters, such as the probability that the population
has declined more than 50% in 10 years (i.e., one of
the COSEWIC criteria for “Endangered” status), pro-
vides a practical and flexible approach to assessing the
uncertainty around particular conclusions one might
draw from a BBS trend.

Second, the HB framework and the HB, model in
particular provide an efficient, flexible, coherent and
complete framework for the analysis, which the ML
model lacks. The hierarchical structure of the model
makes efficient use of the data and is less sensitive to
annual variation in sampling error. In addition, the HB,
model can be expanded easily to include covariables
and explicit spatial structure (e.g., Thogmartin et al.
2004; Nielson et al. 2008), and the HB framework
lends itself well to composite and comparative analy-
ses of the BBS and other surveys (e.g., Link and Sauer
2007 and the method used here to compare the mag-
nitude and precision of trends from the two models).
Finally, the HB, model estimates trends and annual in-
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dices within a single coherent model structure which
the ML model lacks. For example, the ML model re-
quires the addition of an arbitrarily chosen constant
to some years’ annual indices to estimate trends.

A third example of improved inference from results
of the HB, model is that the trends and estimates of
uncertainty around trends for multi-strata regions
(e.g., national trends), are a much clearer reflection of
the full uncertainty of the population status estimates
within the region. That is, regional and national esti-
mates are combinations of stratum-level estimates,
appropriately weighted by the proportion of the spe-
cies’ breeding population in each stratum (by summing
indices of relative abundance, weighted by the stra-
tum’s area). In addition, the strata in the HB, model are
more likely to reflect spatial variation in population
trends and trajectories than the degree-block strata in
the ML analysis. The HB, strata are structured on
BCRs, which are relevant to population processes, and
political units, which are relevant to management and
human activity. In contrast, inferences regarding trends
and uncertainty from the ML model only apply to the
degree blocks included in the analysis, i.e., degree-
blocks with data. Furthermore, the degree-block
weighting of the ML model means that the relative
influence of populations with potentially disparate
trends and trajectories among different regions (i.e.,
BCRs and political units) depends on the relative sam-
pling intensity of the BBS in those regions (i.e., the
number of degree-blocks with data). For example, the
White-throated Sparrow (Zonotrichia albicollis) occurs
on BBS routes in the southern BCRs (12, 13, and 14),
where there are many degree-blocks with data and
where trends are strongly negative. However, the bulk
of its population occurs in the more northern BCRs
(6, 7, and 8), where trends are relatively stable and
there are few degree-blocks with data. The degree-
block weighting of the ML analysis puts relatively
more weight on the decreasing southern populations
(national short-term ML trend —0.9%/year [95% con-
fidence interval —1.7% to —0.1%]), whereas the stra-
tum area weights of the HB, analysis put more weight
on the more positive and much less precisely estimat-
ed trends from the northern populations (national short-
term HB; trend 0.59%/year [95% credible interval
—1.64% to 3.87%]). The estimated average trend from
the HB, model better reflects the status of the bulk of
the Canadian population of the White-throated Spar-
row in the northern BCRs and, given that the north-
ern BCRs are relatively poorly surveyed by the BBS,
the wider credible interval of the national HB, trend is
a more appropriate measure of the uncertainty around
the population’s status. This more appropriate weight-
ing of imprecisely measured trends from regions that
are relatively large but poorly surveyed also explains
the modest improvements in precision at the national
level, relative to the greater improvements within indi-
vidual BCRs (Figure 3).
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Because of the flexibility of the HB; model frame-
work, the best short-term trend and the best long-term
trend do not necessarily include data from the same
spatial areas. Since 1966, spatial coverage by Canadi-
an BBS routes has expanded gradually into the more
northerly strata. The earliest BBS routes in Canada
were run in the Maritimes and Quebec in 1966. By the
early 1970s, much of southern Canada had adequate
coverage. However, some more northerly regions have
only had adequate coverage for the last 20 years. Be-
cause of the paucity of data from the Northwest Ter-
ritories and much of the Yukon before the late 1980s
or later, trends in these areas cannot reasonably be
extrapolated back to 1970. Long-term trend estimates
for large regions (e.g., national trends) can be estimat-
ed, but they must exclude some strata, for which we
have only recent data. In contrast, short-term estimates
for those regions should include all of the strata with
data. In the HB; model, deriving separate short- and
long-term trend estimates that include different strata
is a straightforward process of summarizing stratum-
level annual estimates, and it retains the entire poste-
rior distribution of all derived estimates. To get simi-
lar separate trends from the ML model would require
multiple runs using different subsets of the data, and
each subset would have a reduced sample size and,
therefore, reduced precision.

Limitations of the HB, model and future evolution
Along with the benefits of a complex hierarchical
model structure come complex consequences for pop-
ulation inference. For example, the trend term in the
HB, model combined with the distributional assump-
tions of the random year-effects terms means that, for
years with relatively sparse or highly variable data, an-
nual indices will tend to track a fitted estimate of the
species’ long-term trend. These assumptions and mod-
el structure are reasonable, given that the long-term
trend is estimated from the data. However, in some
cases, they could lead to an over-smoothing of the an-
nual indices. For example, the model does not account
for autocorrelation in the sequence of successive year-
effects and could, therefore, be insensitive to cyclical
population patterns, unless each individual year con-
tained relatively strong evidence of a departure from
the long-term trend. Similarly, the number of BBS
routes in Canada has more than doubled since 1980,
and, therefore, sparser data in the early years means
that those early annual indices are less likely to depart
from the long-term trend than annual indices in later
years. Although these assumptions greatly reduce the
influence of sampling errors on trend estimates (Link
and Sauer 2002), as evidenced by the reduced inter-
annual variability of HB, trend estimates (Figure 6),
there are species for which the smoothing of annual in-
dices could lead to bias in both the individual indices
and the trends. Future refinements of the model may
include terms to model the temporal autocorrelation
in the year-effects, so that the model will more closely
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reflect population fluctuations when successive years
show similar departures from the long-term trend.

Conclusion

Overall, the use of the HB, model to estimate trends
and annual indices of abundance provides improved
information on the population status of birds in Cana-
da. Estimates from the HB, model are generally sim-
ilar in direction and magnitude to estimates from the
previous model, but they offer greater precision, less
variation among years, a better representation of the
spatial variation in population status across Canada,
and a more intuitive and flexible assessment of uncer-
tainty. As statistical science evolves, the analysis of
BBS data will follow suit, continuing to improve as it
has in the past. This evolution and improvement hon-
ours the contributions of the thousands of volunteers
who have participated in the BBS since its inception,
and ensures that this survey will remain at the forefront
of our understanding of the status of Canada’s and
North America’s birds.

Acknowledgements

We thank the thousands of skilled volunteers who
have contributed to the Breeding Bird Survey over the
years, as well as those who have served as provincial
and territorial coordinators. Our thanks also go to Pete
Blancher, Brian Collins, Bill Link, David A. W. Miller,
John Sauer, and Joe Veech for their insightful com-
ments and review of the paper, model development
or both.

Documents Cited (marked * in text)

COSEWIC (Committee on the Status of Endangered
Wildlife in Canada). 2011. COSEWIC’s assessment
process and criteria. COSEWIC, Ottawa, Ontario, Canada.
Accessed December 2013. www.cosewic.gc.ca/eng/sct0
/assessment_process_e.cfm

Environment Canada. 2011. Status of Birds in Canada —
2011. Environment Canada, Ottawa, Ontario, Canada. Ac-
cessed 11 April 2014. www.ec.gc.ca/soc-sbc.

Erskine, A. J. 1978. The first ten years of the co-operative
Breeding Bird Survey in Canada. Canadian Wildlife Serv-
ice Report Series number 42. Minister of Fisheries and the
Environment, Ottawa, Ontario, Canada. 61 pages.

North American Bird Conservation Initiative Canada.
2012. The State of Canada’s Birds, 2012. Environment
Canada, Ottawa, Ontario, Canada. 36 pages. Accessed 11
April 2014. www.stateofcanadasbirds.org/State_of Cana
da’s_birds_2012.pdf.

North American Bird Conservation Initiative Interna-
tional. 2013. Bird conservation regions. North American
Bird Conservation Initiative, Ottawa, Ontario, Canada.
Accessed July 2013. www.nabci.net/International/English
/bird_conservation_regions.html#.

Rich, T. D., C. J. Beardmore, H. Berlanga, P. J. Blancher,
M. S. W. Bradstreet, G. S. Butcher, D. W. Demarest,
E. H. Dunn, W. C. Hunter, E. E. Iiigo-Elias, J. A.
Kennedy, A. M. Martell, A. O. Panjabi, D. N. Pashley,
K. V. Rosenberg, C. M. Rustay, J. S. Wendt, and T. C.
Will. 2004. Partners in Flight North American Landbird



134

Conservation Plan. Cornell Lab of Ornithology. Ithaca,
New York, USA. Accessed July 2013. www.partnersin
flight.org/cont_plan.

USGS (United States Geological Survey). 2012. North
American Breeding Bird Survey data retrieval site. Patu-
xent Wildlife Research Center, USGS, Laurel, Maryland,
USA. Accessed July 2013. www.pwrc.usgs.gov/bbs/Raw
Data.

Literature Cited

Clark, J. S. 2005. Why environmental scientists are becom-
ing Bayesians. Ecology Letters 8: 2—14.

Geissler, P. H., and B. R. Noon. 1981. Estimates of avian
population trends from the North American Breeding Bird
Survey. Pages 42—51 in Estimating Numbers of Terrestri-
al Birds. Edited by C. J. Ralph and J. M. Scott. Cooper
Ornithological Society, Studies in Avian Biology 6.

Legendre, P., and L. Legendre. 1998. Numerical ecology.
Number 20 in Developments in Environmental Modelling.
Elsevier, Amsterdam.

Link, W. A., and R. J. Barker. 2009. Bayesian Inference:
With Ecological Applications. Academic Press, Burlington,
Massachusetts, USA. xiii, 339 pages.

Link, W. A., and J. R. Sauer. 2002. A hierarchical model of
population change with application to Cerulean Warblers.
Ecology 83: 2832-2840.

Nielson, R. M., L. L. McDonald, J. P. Sullivan, C. Burgess,
D. S. Johnson, D. H. Johnson, S. Bucholtz, S. Hyberg,
and S. Howlin. 2008. Estimating the response of Ring-
necked Pheasants (Phasianus colchicus) to the Conser-
vation Reserve Program. Auk 125: 434-444.

SUPPLEMENTARY MATERIAL:

THE CANADIAN FIELD-NATURALIST

Vol. 128

Newman, M. C. 1993. Regression analysis of log-transformed
data: statistical bias and its correction. Environmental Toxi-
cology and Chemistry 12: 1129-1133.

O’Hara, R. B., and D. J. Kotze. 2010. Do not log-transform
count data. Methods in Ecology and Evolution 1: 118-122.

Pardieck, K. L., D. J. Ziolkowski, and B. G. Peterjohn.
2008. A Bibliography for the North American Breeding
Bird Survey. Version 2008. USGS Patuxent Wildlife Re-
search Center, Laurel, Maryland, USA.

Robbins, C. S., D. Bystrak, and P. H. Geissler. 1986. The
breeding bird survey: its first fifteen years, 1965-1979.
Resource publication 157. United States Fish and Wildlife
Service. Washington, D.C., USA. 196 pages.

Sauer, J. R., and W. A. Link. 2002. Hierarchical modeling of
population stability and species group attributes from sur-
vey data. Ecology 83: 1743-1751.

Sauer, J. R., and W. A. Link. 2011. Analysis of the North
American Breeding Bird Survey using hierarchical models.
Auk 128: 87-98.

Thogmartin, W. E., J. R. Sauer, and M. G. Knutson. 2004.
A hierarchical spatial model of avian abundance with appli-
cation to Cerulean Warblers. Ecological Applications 14:
1766-1779.

Thomas, L., and K. Martin. 1996. The importance of analy-
sis method for Breeding Bird Survey population trend
estimates. Conservation Biology 10: 479—-490.

Thomas, L. 1996. Monitoring long-term population change:
Why are there so many analysis methods? Ecology 77:
49-51.

Supplementary material available at:
http://www.canadianfieldnaturalist.ca

Received 23 September 2013
Accepted 22 November 2013

APPENDIX 1. Detailed description of the maximum likelihood (ML) model used to generate Canadian Breeding Bird Survey.

trends before 2010.

APPENDIX 2. WinBUGS (Bayesian inference Using Gibbs Sampling) language descriptions of the hierarchical Bayesian models.

APPENDIX 3. Microsoft Excel workbook showing differences in trend estimates between the maximum likelihood (ML) and
the hierarchical Bayesian (HB,) models, with separate worksheets for short- and long-term trends and for each Bird

Conservation Region, Canada, and New Brunswick.

APPENDIX 4. Additional comparisons of the hierarchical Bayesian (HB,) and maximum likelihood (ML) models, including
comparisons of the number of species with trend estimates and the classification of species trends into the categori-
cal assessments of population status used in Environment Canada’s Status of Birds in Canada website (Environment

Canada 2011).



